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Connect an SVM network on the CNN In order to trigger early exits (as in
cascade [Viola and Jones, 2001]) .

1. After the CNN training, we define the following SVM network architecture : &
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Context

- Detection of numerous and variable small urban objects in High-Definition aerial
color images

- Applications : tombs in cemetery

 Typical tombs size is 100x100 pixels
 Tombs are very variable in shape and appearance
* Image database: 24 images of 5,000 x 5,000 pixels (2.5 cm/pixel — 24 bits)

— We adapt the AlexNet CNN [Krizhevsky et al., 2012] to process small images
(64x64 pixels) :
- remove the stride in the first layer,

- switch Pool3 with Conv4, @4096

- decrease the kernel size in the first convolution.
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Problem during the testing step :
We use the sliding window process to analyse billions of positions
— The computational cost is huge.

An approach to speed up a CNN

SVM Layer Input layers #SVM
SVM1 Pooll 68
SVM2 SVM1 25
SVM3 Pool3 232
SVM4 SVM1 & 50
SVM3
SVM5 Pool5 348
SVM6 SVM4 & 50
SVM5
SVM7 FC1 1
SVM8 FC2 1
SVM9 SVM6-SVM7 | 50

2. For each SVM i, we find the best threshold (noted &') for which the precision is
higher than an arbitrary value, using a validation database.

3. We sort all the SVM using their activation cost (see ed. 1) in such a way that the
recall is maximal. This order defines the activation path [Pasquet et al., 2015].

4. During the testing step :

- the CNN and the SVM network are activated at the same time,
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- if score(SVM)28' —~ SVM is confident ,

- If #(SVM confident)> 6__ - the network activation is stopped.

Convolution 1

Convolution 2

We define the computational cost as

r _ R .
(kernel size)x out'“ < N’ if convolution layer

(€) — e IR .
wE=we U e Nt if FC layer [1]
0 otherwise o |
with N the number of feature maps from the layer ¢ and out''| N if FC layer

Results and conclusion

height X width otherwise

16x16@192 We model the computational cost using the relative cost, noted RC
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Analysis of the proposed method :

SVM7 & SVM8

SVM1 & SVM2 SVM3 & SVM4 SVM5 & SVM6 SVM9 o _
Y s ~ Average efficiency for groups of SVM layers with 6 _
o000 SVM #Activations | Error (%) FP (%) TP (%)
5 o SVM1-2 3,946,411 0.38 0.38 0.02
1000 | : § §
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. The number of activations for each SVM
-

fe =1:

lim
2 ‘'SVM confident’ > e”m

we stop the activation of
the CNN

— The activation path massively
In our experiments, for a recall of
the network remains unused.

reduces the computational cost.
only 67%, an average of 97.8% of

- 9% precision gain for a recall set of 67%.
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» 0,65 > 8™ => confident

SVM using only one
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