# **SPEEDING-UP A CONVOLUTIONAL NEURAL NETWORK BY CONNECTING AN SVM NETWORK**

J. Pasquet<sup>1,2</sup>, M. Chaumont<sup>1,3</sup>, G. Subsol<sup>1</sup>, M. Derras<sup>2</sup>

<sup>1</sup>LIRMM, University of Montpellier / CNRS, France <sup>2</sup>Berger Levrault, Labège, France <sup>3</sup>University of Nîmes, France



@4096 @4096



## Context

- Detection of numerous and variable small urban objects in High-Definition aerial color images

- Applications : tombs in cemetery

- Typical tombs size is 100x100 pixels
- Tombs are very variable in shape and appearance
- Image database: 24 images of 5,000 x 5,000 pixels (2.5 cm/pixel 24 bits)

 $\rightarrow$  We adapt the AlexNet CNN [Krizhevsky et al., 2012] to process small images (64x64 pixels) :



- remove the stride in the first layer,
- switch Pool3 with Conv4,
- decrease the kernel size in the first convolution.



Problem during the testing step :

We use the sliding window process to analyse billions of positions

 $\rightarrow$  The computational cost is huge.

### An approach to speed up a CNN

**Connect an SVM network** on the CNN in order to trigger early exits (as in cascade [Viola and Jones, 2001]) .

### **Results and conclusion**

if FC layer

otherwise

We define the computational cost as :  $(\text{kernel size}) \times out^{(c-1)} \times N^{(c)}$ if convolution layer  $w^{(c)} = w^{(c-1)} +$ 

# 201 Ч C 20 • – S **(**) $\mathbf{O}$ 90

if FC layer

otherwise

RC (%)

1.38

1.59

1.75

2.17

2.83

4.74

4.94

6

1. After the CNN training, we define the following SVM network architecture :

| SVM Layer | Input layers   | #SVM |
|-----------|----------------|------|
| SVM1      | Pool1          | 68   |
| SVM2      | SVM1           | 25   |
| SVM3      | Pool3          | 232  |
| SVM4      | SVM1 &<br>SVM3 | 50   |
| SVM5      | Pool5          | 348  |
| SVM6      | SVM4 &<br>SVM5 | 50   |
| SVM7      | FC1            | 1    |
| SVM8      | FC2            | 1    |
| SVM9      | SVM6-SVM7      | 50   |



2. For each SVM i, we find the best threshold (noted  $\delta^{i}$ ) for which the precision is higher than an arbitrary value, using a validation database.

3. We sort all the SVM using their activation cost (see eq. 1) in such a way that the recall is maximal. This order defines the **activation path** [Pasquet et al., 2015].

SVM '

SVM 2

4. During the testing step :

- the CNN and the SVM network are activated at the same time,
- if score(SVM<sub>i</sub>) $\geq \delta^i \rightarrow$  SVM is confident,
- if #(SVM confident)>  $\theta_{im} \rightarrow$  the network activation is stopped.



with N<sup>(c)</sup> the number of feature maps from the layer c and  $out^{(c)}$ height × width



**The effectiveness of the proposed method :** 

 $\overline{w}^{(FC2)}$ 



#### **Analysis of the proposed method :**

|       | S        | SVM1 & SVM2 SVM3 & SVM4 SVM5 & SVM6 SV<br>SVM1 & SVM5 & SVM6 SV                                                 | & SVM8<br>/M9 |     |
|-------|----------|-----------------------------------------------------------------------------------------------------------------|---------------|-----|
| 1     | 10000000 |                                                                                                                 |               | 11  |
|       | 1000000  |                                                                                                                 | S             | 3   |
|       | 100000   |                                                                                                                 | L             | .2  |
| lions | 10000    |                                                                                                                 | S             | 31  |
| ctiva | 1000     |                                                                                                                 | S             | 31  |
| #a    | 100      |                                                                                                                 |               | • 1 |
|       | 10 -     | i de la companya de l |               | ) ' |

| Average efficiency for groups of SVM layers with $\theta_{lim}$ |              |           |        |        |  |  |  |  |  |
|-----------------------------------------------------------------|--------------|-----------|--------|--------|--|--|--|--|--|
| SVM<br>Layer                                                    | #Activations | Error (%) | FP (%) | TP (%) |  |  |  |  |  |
| SVM1-2                                                          | 3,946,411    | 0.38      | 0.38   | 0.02   |  |  |  |  |  |
| SVM3-4                                                          | 31,433       | 18.76     | 18.61  | 0.71   |  |  |  |  |  |
| SVM5-6                                                          | 4,724        | 50.70     | 49.03  | 5.89   |  |  |  |  |  |
| SVM7-9                                                          | 450          | 42.85     | 30.84  | 35.61  |  |  |  |  |  |

[1]

H



Convolution 2

The number of activations for each SVM

> $\rightarrow$  The activation path massively reduces the computational cost. In our experiments, for a recall of only 67%, an average of 97.8% of the network remains unused.

 $\rightarrow$  **9% precision gain** for a recall set of 67%.

The authors would like to thank the Berger-Levrault group for supporting this research. Berger-Levrault is a French public regulation expert that addresses healthcare and local public administrations.

Website : www.berger-levrault.com

[1] Pasquet J., Chaumont M., Subsol G., and Derras M., "An efficient multi-resolution SVM network approach for object detection in aerial images," in Machine Learning for signal processing, MLSP2015. IEEE, 2015

[3] Yichuan Tang, "Deep learning using support vector machines," ICML 2013 Challenges in Representation Learning Workshop, 2013.

[2] P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features," in Computer Vision and Pattern Recognition, 2001. CVPR 2001. IEEE 2001

[4] A. Krizhevsky, I. Sutskever, G. E. Hinton '' ImageNet Classification with Deep Convolutional Neural Networks. " in Advances in Neural Information Processing Systems 25, pp. 1097-1105. 2012.