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Context
- Detection of numerous and variable small urban objects in High-Definition aerial 
color images

- Applications : tombs in cemetery 

Connect an SVM network on the CNN in order to trigger early exits (as in 
cascade [Viola and Jones, 2001]) .
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1. After the CNN training, we define the following SVM network architecture :

2. For each SVM i, we find the best threshold (noted δi) for which the precision is 
higher than an arbitrary  value, using a validation database.

3. We sort all the SVM using their activation cost (see eq. 1) in such a way that the 
recall is maximal. This order defines the activation path [Pasquet et al., 2015]. 

4. During the testing step : 
- the CNN and  the SVM network are activated at the same time,

- if score(SVM
i
)≥δi →SVM is confident ,

- if #(SVM confident)> θ
lim

 → the network activation is stopped. 

We model the computational cost using the relative cost, noted RC :  

RC=
w(c )

w(FC 2)

w(c)=w(c−1)+{
(kernel size)×out(c−1)

×N (c )  if convolution layer

out(c−1)
×N (c )                          if FC layer 

0                                              otherwise
out (c){N

(c)                    if FC layer 
height×width    otherwise   

with N(c) the number of feature maps from the layer c and 

Average efficiency for groups of SVM layers with θ
lim

 

=2

→ The activation path massively reduces the computational cost. 
In our experiments, for a recall of only 67%, an average of 97.8% of 
the network remains unused.

→ 9% precision gain for a recall set of 67%. 
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SVM 
Layer

#Activations Error (%) FP (%) TP (%)

SVM1-2 3,946,411 0.38 0.38 0.02

SVM3-4 31,433 18.76 18.61 0.71

SVM5-6 4,724 50.70 49.03 5.89

SVM7-9 450 42.85 30.84 35.61

The number of activations for each SVM

The effectiveness of the proposed method :

Analysis of the proposed method :
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0,7  < δSVM0   => not confident

0,65 > δSVM1 => confident

0,80 < δSVM4 => not confident

0,99 < δSVM5 => confident

If θ
lim 

= 1 :
 

2 ‘SVM confident’ > θ
lim 

 

we stop the activation of 
the CNN

θ
lim

 Precision Recall RC (%)

0 69.49 43.15 1.38

1 86.53 47.56 1.59

2 90.90 52.53 1.75

5 68.42 90.27 2.17
11 82.7 70.52 2.83

26 80.95 71.52 4.74

27 77.90 70.52 4.94

θ
lim

=5

→  We adapt the AlexNet CNN  [Krizhevsky et al., 2012] to process small images 
(64x64 pixels) :

- remove the stride in the first layer,
- switch Pool3 with Conv4,
- decrease the kernel size in the first convolution.
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● Typical tombs size is 100x100 pixels
● Tombs are very variable in shape and appearance
● Image database: 24 images of 5,000 x 5,000 pixels (2.5 cm/pixel – 24 bits)

Problem during the testing step : 

We use the sliding window process to analyse billions of positions

→ The computational cost is huge. 

We define the computational cost as :  
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